Znajdź odpowiedź na Twoje pytanie o 1.Przedstaw w postaci jednej potęgi: a) e(do potęgi 5)*E(DO POTĘGI 7) :E (DO POTĘGI 3) -----… Użytkownik Brainly Użytkownik Brainly
Szybka nawigacja do zadania numer: 5 10 15 20 25 30 35 40 .Liczba \(7^7\cdot 7^8\) jest równa A.\( 7^{56} \) B.\( 14^{56} \) C.\( 49^{15} \) D.\( 7^{15} \) DLiczba \(5^{17}\cdot 6^{17}\) jest równa A.\( 30^{34} \) B.\( 30^{17} \) C.\( 11^{17} \) D.\( 11^{34} \) BLiczba \(2^{20}\cdot 4^{40}\) jest równa A.\( 2^{60} \) B.\( 4^{50} \) C.\( 8^{60} \) D.\( 8^{800} \) BIloczyn \(81^2\cdot 9^4\) jest równy A.\( 3^4 \) B.\( 3^0 \) C.\( 3^{16} \) D.\( 3^{14} \) CLiczba \( 3^{30}\cdot 9^{90} \) jest równa: A.\(3^{210} \) B.\(3^{300} \) C.\(9^{120} \) D.\(27^{2700} \) ALiczba \(2^{40}\cdot 4^{20}\) jest równa A.\( 4^{40} \) B.\( 4^{50} \) C.\( 8^{60} \) D.\( 8^{800} \) AIloraz \(125^5:5^{11}\) jest równy A. \(5^{-6}\) B. \(5^{16}\) C. \(25^{-6}\) D. \(25^2\) DLiczbę \(x=2^2\cdot 16^{-4}\) można zapisać w postaci A.\( x=2^{14} \) B.\( x=2^{-14} \) C.\( x=32^{-2} \) D.\( x=2^{-6} \) BDana jest liczba \(x=63^2\cdot \left (\frac{1}{3} \right )^4\). Wtedy A.\( x=7^2 \) B.\( x=7^{-2} \) C.\( x=3^8 \cdot 7^2 \) D.\( x=3 \cdot 7 \) AIloczyn \(9^{-5}\cdot 3^8\) jest równy A.\( 3^{-4} \) B.\( 3^{-9} \) C.\( 9^{-1} \) D.\( 9^{-9} \) CTrzecia część liczby \(3^{150}\) jest równa: A.\( 1^{50} \) B.\( 1^{150} \) C.\( 3^{50} \) D.\( 3^{149} \) DWyrażenie \(\sqrt{1{,}5^2+0{,}8^2}\) jest równe: A.\( 2{,}89 \) B.\( 2{,}33 \) C.\( 1{,}89 \) D.\( 1{,}70 \) DLiczba \(\left (\frac{2^{-2}\cdot 3^{-1}}{2^{-1}\cdot 3^{-2}} \right )^0\) jest równa A.\( 1 \) B.\( 4 \) C.\( 9 \) D.\( 36 \) ALiczba \(128^{-4}:\left ( \frac{1}{32} \right )^4\) jest równa A.\( 4^{-4} \) B.\( 2^{-4} \) C.\( 2^4 \) D.\( 4^4 \) ALiczba \(\sqrt[3]{(27)^{-1}}\cdot 72^0\) jest równa A.\( \frac{1}{3} \) B.\( -\frac{1}{3} \) C.\( 0 \) D.\( 3 \) ALiczba \(7^{\frac{4}{3}}\cdot \sqrt[3]{7^5}\) jest równa A.\( 7^{\frac{4}{5}} \) B.\( 7^3 \) C.\( 7^{\frac{20}{9}} \) D.\( 7^2 \) BLiczba \(\sqrt[3]{{(-8)}^{-1}}\cdot {16}^{\frac{3}{4}}\) jest równa A.\( -8 \) B.\( -4 \) C.\( 2 \) D.\( 4 \) BLiczba \( 3^{\frac{8}{3}}\cdot \sqrt[3]{9^2} \) jest równa: A.\(3^3 \) B.\(3^{\frac{32}{9}} \) C.\(3^4 \) D.\(3^5 \) CLiczba \(\sqrt[3]{3}\cdot \sqrt[6]{3}\) jest równa A.\( \sqrt[9]{3} \) B.\( \sqrt[18]{3} \) C.\( \sqrt[18]{6} \) D.\( \sqrt{3} \) DLiczbę \(\sqrt{32}\) można przedstawić w postaci A.\( 8\sqrt{2} \) B.\( 12\sqrt{3} \) C.\( 4\sqrt{8} \) D.\( 4\sqrt{2} \) DWartość wyrażenia \(5^{100}+5^{100}+5^{100}+5^{100}+5^{100}\) jest równa A.\( 5^{500} \) B.\( 5^{101} \) C.\( 25^{100} \) D.\( 25^{500} \) BDo przedziału \((1, \sqrt{2})\) należy liczba: A.\( \sqrt{3}-1 \) B.\( 2\sqrt{5}-3\sqrt{2} \) C.\( \sqrt{6}-\sqrt{3} \) D.\( \sqrt{5}-\sqrt{1} \) DLiczbę \(0{,}000421\) można zapisać w postaci \(a\cdot 10^k\), gdzie \(a \in \langle 1, 10 \rangle, k \in C\). Wówczas: A.\( a=0{,}421;\ k=-3 \) B.\( a=4{,}21;\ k=-5 \) C.\( a=4{,}21;\ k=-4 \) D.\( a=42{,}1;\ k=-6 \) CWyrażenie \(2\sqrt{50}-4\sqrt{8}\) zapisane w postaci jednej potęgi wynosi A.\( 2^{\frac{3}{2}} \) B.\( 2^{\frac{1}{2}} \) C.\( 2^{-1} \) D.\( 4^{\frac{1}{2}} \) ALiczba \(\frac{\sqrt{50}-\sqrt{18}}{\sqrt{2}}\) jest równa A.\( 2\sqrt{2} \) B.\( 2 \) C.\( 4 \) D.\( \sqrt{10}-\sqrt{6} \) BKtóra z poniższych liczb jest większa od \(1\)? A.\( (0{,}1)^{-3} \) B.\( \left ( \frac{1}{2} \right)^{10} \) C.\( (-2)^{-4} \) D.\( \frac{1}{\sqrt{2}} \) AWiadomo, że \(x^{0,1205}=6\). Wtedy \(x^{0,3615}\) równa się A.\( \sqrt[3]{6} \) B.\( 216 \) C.\( 36 \) D.\( 3 \) BLiczby \(A=(5^4)^3, B=5^5+5^5, C =5^{12} : 5^7, D=5^3 \cdot 5^6\) ustawiono w kolejności malejącej, zatem A.\( B>A>D>C \) B.\( A>D>B>C \) C.\( A>B>D>C \) D.\( C>B>D>A \) BLiczba \(\frac{5^3\cdot 25}{\sqrt{5}}\) jest równa A.\( 5^5\sqrt{5} \) B.\( 5^4\sqrt{5} \) C.\( 5^3\sqrt{5} \) D.\( 5^6\sqrt{5} \) BPo uproszczeniu wyrażenia \( \frac{(a^2:a^3)^{-2}}{a^{-5}} \), gdzie \( a \ne 0 \), otrzymamy A.\(a^7 \) B.\(a^{-3} \) C.\(a^3 \) D.\(a^{-7} \) ALiczba \( \left ( \frac{1}{\left (\sqrt[3]{729}+\sqrt[4]{256}+2 \right)^0} \right )^{-2} \) jest równa A.\(\frac{1}{225} \) B.\(\frac{1}{15} \) C.\(1 \) D.\(15 \) CLiczba \( \frac{1}{2}\cdot 2^{2014} \) jest równa A.\(2^{2013} \) B.\(2^{2012} \) C.\(2^{1007} \) D.\(1^{2014} \) ALiczba \(\left (\sqrt[3]{16}\cdot 4^{-2} \right)^3\) jest równa A.\( 4^4 \) B.\( 4^{-4} \) C.\( 4^{-8} \) D.\( 4^{-12} \) BPołowa sumy \(4^{28}+4^{28}+4^{28}+4^{28}\) jest równa A.\(2^{30} \) B.\(2^{57} \) C.\(2^{63} \) D.\(2^{112} \) BLiczba \(\left ( \frac{3+\sqrt{3}}{\sqrt{3}} \right)^2\) jest równa A.\( 4 \) B.\( 9 \) C.\( \frac{3+\sqrt{3}}{3} \) D.\( 4+2\sqrt{3} \) DLiczba \(3^{\frac{9}{4}}\) jest równa A.\( 3\cdot \sqrt[4]{3} \) B.\( 9\cdot \sqrt[4]{3} \) C.\( 27\cdot \sqrt[4]{3} \) D.\( 3^9\cdot 3^{\frac{1}{4}} \) BWskaż równość prawdziwą. A.\( -256^2=(-256)^2 \) B.\( 256^3=(-256)^3 \) C.\( \sqrt{(-256)^2}=-256 \) D.\( \sqrt[3]{-256}=-\sqrt[3]{256} \) DLiczba \(\frac{\sqrt{8}}{\sqrt[3]{16}}\) jest równa A.\( \sqrt[3]{2} \) B.\( \sqrt[4]{2} \) C.\( \sqrt[5]{2} \) D.\( \sqrt[6]{2} \) DLiczba \(2^{\frac{4}{3}}\cdot \sqrt[3]{2^5}\) jest równa A.\( 2^{\frac{20}{3}} \) B.\( 2 \) C.\( 2^{\frac{4}{5}} \) D.\( 2^3 \) DLiczba \(\frac{9^5\cdot 5^9}{45^5}\) jest równa A.\( 45^{40} \) B.\( 45^9 \) C.\( 9^4 \) D.\( 5^4 \) DLiczba \(\sqrt{\frac{9}{7}}+\sqrt{\frac{7}{9}}\) jest równa A.\( \sqrt{\frac{16}{63}} \) B.\( \frac{16}{3\sqrt{7}} \) C.\( 1 \) D.\( \frac{3+\sqrt{7}}{3\sqrt{7}} \) BLiczba \(\frac{5^{12}\cdot 9^5}{15^{10}}\) jest równa A.\( 25 \) B.\( 3^7 \) C.\( 3^3 \) D.\( \frac{25}{27} \) A
Liczba 23 000 zapisana w notacji wykładniczej to : a) 23*10 do potęgi 3 b)23*10 do potęgi 4 c)2,3*10 do potęgi 3 d)2,3*10 do potęgi 4 C. powierzchnia morza bałtyckiego jest równa 415 300 km kwadratowych. wielkość ta zapisana w notacji wykładniczej to : a)0,4153*10 do potęgi 6 km kwadratowych b)4,153*10 do potęgi 5 km kwadratowych c

Odpowiedzi blocked odpowiedział(a) o 21:48 4^1/2=216^1/2=48^1/3=2jest to pierwiastekjakby było 8^2/3= pierwiastek trzeciego stopnia z 8, do kwadratu itd. Rozumiesz? 6 0 kasiulenka222 odpowiedział(a) o 17:16 dzięki rozumiem ;) 0 0 kasiulenka222 odpowiedział(a) o 21:44 do potęgi a nie pomnożyć ;p 0 1 MiłoszG. odpowiedział(a) o 21:36 100*0,5= 50 0 2 Uważasz, że ktoś się myli? lub

64^1/3 = pierwiastek z 64 o stopniu 3 = 4 8/27^-1/3= pierwiastek z 27/8 o stopniu 3 = 3/2 Dalej nie napisze bo nie mam kartki a bez kartki trochę się gubię :D
W tym miejscu znajduje się zestawienie najważniejszych wzorów z działań na potęgach i pierwiastkach. Przykłady zastosowania tych wzorów znajdziesz w kolejnych rozdziałach. Definicja potęgi o wykładniku naturalnym \[a^n=\underbrace{a\cdot a\cdot a\cdot...\cdot a}_{n \text{ razy}}\] Wzory na potęgi o wykładnikach wymiernych \[ a^{-n}=\frac{1}{a^n}\quad (\text{dla }a\ne 0)\\[16pt] a^{\tfrac{1}{n}}=\sqrt[n]{a}\quad (\text{dla }a\ge 0)\\[16pt] a^{\tfrac{k}{n}}=\sqrt[n]{a^k}\quad (\text{dla }a\ge 0)\\[16pt] a^{-\tfrac{k}{n}}=\frac{1}{\sqrt[n]{a^k}}\quad (\text{dla }a\gt 0)\\[16pt] \] Wzory działań na potęgach \[ a^m\cdot a^n=a^{m+n}\\[16pt] \frac{a^m}{a^n}=a^{m-n}\\[16pt] a^n\cdot b^n=(a\cdot b)^n\\[16pt] \frac{a^n}{b^n}=\left (\frac{a}{b}\right )^n\\[16pt] \left(a^m \right)^n=a^{m\cdot n} \] Wzory działań na pierwiastkach \[ \sqrt{a}\cdot \sqrt{b}=\sqrt{a\cdot b}\\[16pt] \frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}} \] Działania na bardziej skomplikowanych pierwiastkach wykonujemy najczęściej zamieniając pierwiastki na potęgi. \[ \sqrt[n]{a}=a^{\tfrac{1}{n}}\\[16pt] \sqrt[n]{a}\cdot \sqrt[m]{a}=a^{\tfrac{1}{n}}\cdot a^{\tfrac{1}{m}}=a^{\tfrac{1}{n}+\tfrac{1}{m}}\\[16pt] \frac{\sqrt[n]{a}}{\sqrt[m]{a}} =\frac{a^{\tfrac{1}{n}}}{a^{\tfrac{1}{m}}} =a^{\tfrac{1}{n}-\tfrac{1}{m}}\\[16pt] \] Inne wzory \[ a^0=1\quad (\text{dla }a\ne 0)\\[16pt] \sqrt{a^2}=|a| \]
25.09.2017 Matematyka Liceum/Technikum rozwiązane Ile to 2 do potęgi 10 Zobacz odpowiedzi 2 do potęgi 10 to 2*2*2*2*2*2*2*2*2*2 czyli 1024
Jesteś : Strona główna >> Potęgi i pierwiastki >> Potęga o wykładniku całkowitym ujemnym Definicja (Potęga o wykładniku całkowitym ujemnym) Jeżeli \(\boldsymbol a\) jest dowolną liczbą, różną od zera, a \(\boldsymbol n\) jest liczbą naturalną , to \[\LARGE \displaystyle a^{-n}=\frac1{a^n}\] liczby naturalne są to liczby : 1, 2, 3, 4, 5, 6, 7, ... Przykłady: \(\displaystyle 3^{-2}=\frac1{3^2}=\frac1{3\cdot3}=\frac19\) \(\displaystyle 2^{-4}=\frac1{2^4}=\frac1{2\cdot2\cdot2\cdot2}=\frac1{16}\) Twierdzenie (Ułamek do potęgi ujemnej) Jeżeli \(\boldsymbol a\) i \(\boldsymbol b\) są dowolnymi liczbami różnymi od zera, a \(\boldsymbol n\) jest liczbą naturalną , to \[\large \left ( \frac{a}{b} \right )^{-n}=\left ( \frac{b}{a} \right )^{n}\] Przykłady: \(\displaystyle \left(\frac54\right)^{-2}=\left(\frac45\right)^2=\frac45\cdot\frac45=\frac{16}{25}\) \(\displaystyle \left(\frac15\right)^{-3}=\left(\frac51\right)^3=5^3=125\) POTĘGA O WYKŁADNIKU CAŁKOWITYM UJEMNYM - ZADANIA Zadanie 1 Podane liczby podnieść do potęgi minus jeden : 1 , 2 , 6 , 25 , 10 , 100 Rozwiązanie Zadanie 2 Podnieść liczby do ujemnej potęgi : \( 6^{-2}\;,\;10^{-2}\;,\;5^{-3}\;,\;4^{-4}\;,\;1^{-5}\;,\;2^{-6}\)Rozwiązanie Zadanie 3 Oblicz potęgi : \(\left(-2\right)^{-1}\;,\;-2^{-1}\;,\;\left(-3\right)^{-2}\;,\;-3^{-2}\) , \(\left(-5\right)^{-3}\;,\;\left(-2\right)^{-4}\;,\;\left(-10\right)^{-2}\)Rozwiązanie Zadanie 4 Oblicz ułamki podniesione do potęgi ujemnej: \(\left(\frac25\right)^{-1}\;,\;\left(\frac47\right)^{-2}\;,\;\left(\frac13\right)^{-3}\;,\; \left(0,1\right)^{-1}\;,\;\left(0,2\right)^{-2}\) korzystając ze wzoru: \(\large a^{-n}=\frac1{a^n}\)Rozwiązanie Zadanie 5 Oblicz ułamki podniesione do potęgi ujemnej: \(\left(\frac37\right)^{-1}\;,\;\left(\frac54\right)^{-2}\;,\;\left(\frac15\right)^{-3}\;,\; \left(0,1\right)^{-1}\;,\;\left(0,5\right)^{-2}\) korzystając ze wzoru: \(\left(\frac ab\right)^{-n}=\left(\frac ba\right)^n\)Rozwiązanie Zadanie 6 Udowodnij wzór na podnoszenie ułamku do potęgi ujemne : \(\large \left(\frac ab\right)^{-n}=\left(\frac ba\right)^n\)Rozwiązanie Powrót : Strona główna >> Potęgi i pierwiastki >> Potęga o wykładniku całkowitym ujemnym
Działania na potęgach.Oblicz: i) 100 do potęgi 5 podzielić 25 do potęgi 5 podzielić 4 do potęgi 5 m) ((3 do potęgi 7 razy 3 do potęgi 2) do potęgi 2 podzielić 3 do potęgi 17) do potęgi 3 n)17 do potęgi 4 razy 16 podzielić 34 do potęgi 4. Bardzo proszę za odpowiedź,potrzebuję na poniedziałek!!!!!!!!!!. Question from @monika99407 - Gimnazjum - Matematyka
Choć niektórzy obawiają się potęgowania i uznają je ze działanie skomplikowane, to pokażemy Wam dzisiaj, że obliczanie liczby do potęgi 0 wcale nie musi być trudne ani szczególnie skomplikowane. Potęgowanie jest działaniem stanowiącym uogólnienie wielokrotnego mnożenia elementu przez siebie. Element, który jest potęgowany nazywa się podstawą, natomiast liczba czynników w mnożeniu to wykładnik. Wynik potęgowania stanowi potęgę elementu. Co zaś wiemy o wyniku potęgowania, jaki daje liczba do potęgi 0? Podpowiadamy. Najważniejsze w poniższym artykule: Według wzoru: a do potęgi 0 = 1, każda liczba podniesiona do potęgi 0 daje wynik 1. Potęga 0 – potęga zero Dla dowolnej liczby a, która jest różna od 0 zachodzi taki wzór: a do potęgi 0=1. Potęga 0 stanowi uważana jest za niejednoznaczną. Choć większość działów matematyki uznaje, że zero do potęgi zerowej daje 1, to zdarza się, że wyrażenie zero do potęgi 0 traktowane jest niejednoznacznie. Interpretując zero do potęgi 0 jako 1 upraszcza się wzory i wyklucza konieczność analizowania przypadków szczególnych w twierdzeniach. Jednak 0 do potęgi 0 traktujemy jako niejednoznaczne w tych sytuacjach, w których wykładnik zmienia się w sposób ciągły. Wielu badaczy argumentuje, że najlepsza wartość zero do potęgi 0 jest zależna od kontekstu, co sprawia, że jej zdefiniowanie pozostaje problematyczne. Pozostali zaś uważają, że zero do potęgi zerowej jest równe 1. Debata na temat potęgi zero trwa już od początków XVII wieku. Najczęściej jednak argumentuje się, że liczba do potęgi 0 daje nam 1, co spełnia zarówno funkcję estetyczną, jak i pragmatyczną. Choć jest to kwestia wciąż umowna, to nie da się ukryć, że jest to umowa wynikająca ze zdrowego rozsądku, która ułatwia życie matematykom i każdemu, kto dopiero odkrywa świat potęgowania i rozpoczyna swoją przygodę z potęgą zerową. Sprawdź: Ile to pierwiastek z 8? Ile to jest do potęgi 0? Uznaje się, że zawsze liczba podniesiona do potęgi 0 daje nam wynik 1. Wyraża się to we wzorze: a do potęgi 0 = 1. Z definicji tej wnioskujemy, że 0 do potęgi n = 0, zaś 1 do potęgi n = 1. Kiedy podnosimy daną liczbę do potęgi o wykładniku 0, powinniśmy korzystać z takiego wzoru: a do potęgi 0 = 1. Zgodnie z tym, co ukazuje powyższy wzór – każda liczba rzeczywista różna od zera podniesiona do potęgi 0 daje nam wynik 1. A zatem chcesz wiedzieć – ile to jest do potęgi 0? Spójrzmy na poniższe przykłady: 0 do potęgi 0 = 11 do potęgi 0 = 12 do potęgi 0 = 16 do potęgi 0 = 18 do potęgi 0 = 1itd. Zobacz też: Obliczanie obwodu koła – Jak obliczyć obwód koła? Musimy zapamiętać, że każda liczba podniesiona do potęgi zerowej daje nam wynik 1. Nie powinniśmy dać się zmylić w sytuacji, gdy będziemy musieli obliczyć coś do potęgi 0, np. siedem ósmych do potęgi zerowej. Liczba ujemna do potęgi 0 również zawsze wynosi 1. Pamiętajmy, że niezależnie od stopnia skomplikowania takiego działania, wynik zawsze jest równy 1. A zatem: 7/8 do potęgi 0 = 1¾ do potęgi 0 = 110/8 do potęgi 0 = 1-2 do potęgi 0 = 1Pierwiastek z 7 do potęgi 0 = 123 do potęgi 0 = 11,23 do potęgi 0 = 1itd. Jak widać na przykładzie potęgowania do potęgi zerowej, nie jest to działanie matematyczne szczególnie skomplikowane. W przypadku potęgi 0 musimy po prostu pamiętać o zasadzie, która tutaj dominuje i za każdym razem ją stosować.
1). Liczba (25 do potęgi 4) do potęgi 2 jest równa: A. 25 do potęgi 6 B. 5 do potęgi 8 C. 5 do potęgi 16 D. 25 do potęgi 16 2).Oblicz ( 7 pierwiastków z 18 - pierwiastek z 8 - 2 pierwiastki z 200 ) do potęgi 2. Potrzebne na teraz!!!
Gosia1919 zapytał(a) o 19:02 Ile jest 25 do potęgi 1/2? Proszę o szybką odpowiedź ;) 0 ocen | na tak 0% 0 0 Odpowiedz Odpowiedzi blocked odpowiedział(a) o 19:05 x do 1/n = pierwiastek n stopnia z xwięc 25 do 1/2 = pierwiastek z 25 , czyli 5 :) Odpowiedź została zedytowana [Pokaż poprzednią odpowiedź] 0 0 Gosia1919 odpowiedział(a) o 19:06: Dziękuje ;) pawelekkk85 odpowiedział(a) o 19:05 25 do potęgi 1/2 = pierwiastek z 25 czyli 5 :)Pozdrawiam 0 0 Gosia1919 odpowiedział(a) o 19:06: Dziękuje ;) Uważasz, że ktoś się myli? lub
Wyszło nam, że 2 do potęgi minus 2 to 1 przez 2 do potęgi 2. Podobny. Jak obliczyc ułamek do potęgi minusowej? 25: 5: 27: 3√3: 3: 28: 2√7: 32: 4√2: 2
Pamiętaj o kolejności wykonywania działań. a) (1/3) do potęgi 3 + 3/7 x 2,1 - 2/3 x (2,25 : 2,5) b) 1… Natychmiastowa odpowiedź na Twoje pytanie.
The average food cost for a U.S. household was $6,602 in 2013. That’s roughly $2,641 annually per person (based on the average 2.5 people in each household). The average cost of food per month for the typical American household is about $550. First, we'll show the breakdown of the budget for food prepared or consumed at home, and then the
Podstawa 2 podniesiona do potęgi minus 1/2 równa się 1 podzielone przez podstawę 2 podniesioną do potęgi 1/2: 2 -1/2 = 1/2 1/2 = 1 / √ 2 = 0,7071. Ułamki z ujemnymi wykładnikami. Podstawa a / b podniesiona do potęgi minus n równa się 1 podzielona przez podstawę a / b podniesioną do potęgi n: ( a / b) - n = 1 / ( a / b) n = 1
With a win vs. the Red Raiders, the Longhorns would clinch the No. 1 seed in the Big 12 Championship Game. Texas Tech got off to a slow 1-3 start, but has won three straight games to reach bowl

Zadanie: 0,0016 do potęgi minus 0,25 , 2,25 do potęgi minus Rozwiązanie: 1 10 2 5 2,25 do potęgi 0,25 czyli 1 1 4 do potęgi 1 2 to 4 5 do potęgi 1 2 Zaliczaj.pl Jesteś niezalogowany Zaloguj się lub zarejestruj nowe konto.

1 Zapisz w postaci jednej potęgi i oblicz. ( / 3 p.) 1 2 3 a) 53 ⋅ 53 1 1 A. 25 B. 5 C. D. 5 25 . strona 4 z 4. You might also like. Klasówka 7.II.P
  • Իхիቤебрጄ иջюшу
  • Гኽσедрад глатрα ኄሐереб
    • ኩупኡφ м
    • ቶжխ еβакану оνопሼх ыца
W tym filmie znajdziecie rozwiązane krok po kroku przykłady potęgowania liczb o wykładniku rzeczywistym. Takie zadania mogą znaleźć się na maturze! Zobaczcie
.